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Q0 Without the ability to collect and analyze speech
sounds in various environments and contexts, it
can be a significant obstacle to trying to do the

latest phonetics/phonology research.

0 Learning a research methodology that can collect
and process a variety of phonological and meta-
information and speech data would be necessary
to participate in various academic discussions,

which is not an easy task to learn in a short time.

Challenges of modern phonological rese
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“Corpus phonology is a new
interdisciplinary field of research
that has only begun to emerge

during the last few years.”
Durand, Gut, and Kristoffersen (2012)
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In The Handbook of Corpus Phonology (2012)
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Opportunities

O Several benefits to doing phonetic research on a large
database
O the ability to do robust testing of linguistic hypotheses
O the use of data from naturalistic interactions

Q the possibility of emergence of macroscopic structure in large

enough databases.

(Goldstein, 2011)



Challenges

O How can we (semi)automatically extract the kinds of representation
and features from large corpora?

U What kinds of tests can we apply to the extracted features to test our
phonologically motivated questions?
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Vowel Length merger in Seoul Korean

(a) Mean vowel duration
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Kang, Yoonjung, Tae-Jin Yoon, and Sungwoo Han (2015). Frequency effects on the vowel length merger in Seoul
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VOT and frequency over time

Low word freq High word freq
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Higher frequency words: smaller VOT difference (p =0.025)

Model predicted VOT

Hye-Young Bang, Morgan Sonderegger, Yoonjung Kang, Megan Clayards, and Tae-Jin Yoon (2018) The emergence, progress, and impact
of sound change in progress in Seoul Korean: implications for mechanisms of tonogenesis. Journal of Phonetics. 66. 120-144.
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Modeling of Nucleus FO on Korean Accentual Phrase

Overall patterns of FO (in semitone)
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syllable position

Tae-Jin Yoon (2017) Growth Curve Modeling of Nucleus FO on Korean Accentual Phrase. Phonetics and Speech Sciences 9(3), 17-23.
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Modeling Emotional States from Speech
Expressions
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Data-driven approach

Without Machine Learning With Machine Learning

VERY SPECIFIC
INSTRUCTIONS

Why did you predict
42 for this data point?

——————————
[}
\

*awkward silence:'j‘
S —_———o .\i- -

https://christophm.github.io/interpretable-ml-book/terminology.html
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Why Emotion in phonetics?

O Emotions: psychological states variously associated with
thoughts, feelings, behavioral responses, and a degree of

p|easure or disp|easu|segrce: https://en.wikipedia.org/wiki/Emotion

0 Modulation of pitch, loudness, duration, and voice quality

across syllables in an utterance

—> conveys both linguistic and non-linguistic information

/

prominence, prosodic phrasing, ...
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age, gender, speaker’s emotional status, etc...
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Two theories on emotion

O The discrete emotion theory
U Basic discrete emotions
(1) surprise, (2) interest, (3) joy, (4) rage, (5) fear, (6) disgust, (7) shame, (8) anguish
U Individual emotions have biological and neurological profiles
0 The dimensional theory
U Two emotional dimensional spaces distinguish emotions

(1) valence — how positive or negative an emotion is

(2) arousal - the intensity of an emotion
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The discrete emotion approach

U Emotions are discrete, measurable, and physiologically distinct.

O Certain emotions appeared to be universally recognized.

- Many studies have examined the vocal characteristics of speech
in hope of defining a vocal signature for each basic emotion (Russell

2003)
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The Dimensional approach

So far, the strongest single association found for vocal

acoustic have been with the sender’s general arousal level.

High-arousal emotions such as anger and joy have similar
characteristics low arousal emotions such as sadness

O greater loudness,

Q higher pitch

O faster speech
Few works have concentrated on distinguishing emotions

between positive- and negative- valence emotions such as

anger and joy.
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surprise

anger

) Valence
disgust 7

" sadness

Arousal

Eerola, T., & Vuoskoski, J. K. (2010). A comparison of the discrete
and dimensional models of emotion in music. Psychology of Music,
39(1), 18-49. doi:10.1177/0305735610362821
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Research topic

O FO contours (not a summary FO such as meanFO or FO range)

contains discriminatory information about emotions.

U Very few can be found in the literature that made the efforts to

describe the shape of fO contours directly in classifying emotions



The Ryerson Audio-Visual Data
and Song (RAVDESS)

dase O

O The RAVDESS dataset is a multimodal validated English dataset that
contains speech, song, and video files that represent 8 emotions.

0 The portion of the dataset that | use in this study is the speech audio files that

are represented by 1440 wave file.

O Twenty-four professional actors (12 female and 12 male) with 60 trials for
each actor broduced the 1440 wave files (24x60 =1440).

Fname Emotions Intensity Repetition Actor Gender Statement
0 03-01-05-01-02-01-16 angry normal 1 16 female Dogs are sitting by the door
1  03-01-06-01-02-02-16 fear normal 2 16 female Dogs are sitting by the door
2  03-01-06-02-01-02-16 fear strong 2 16 female Kids are talking by the door
3 03-01-05-02-01-01-16 angry strong 1 16 female Kids are talking by the door
4 03-01-07-01-01-01-16  disgust normal 1 16 female Kids are talking by the door

Livingstone, S.R. and F.A. Russo. (2018). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of

facial and vocal expressions in North American English. PLOS ONE 13(5), e0196391.



The Ryerson Audio-Visual Database 0
and Song (RAVDESS) (2)

L The actors vocalized two sentences in a neutral North American accent.
O “Kids are talking by the door”
O “Dogs are sitting by the door”

L The emotions included in this dataset are
U neutral, calm, happy, sad, angry, fearful, surprise, and disgust

O Each expression is produced at two levels of emotional intensity (normal and

strong) except for the neutral emotion that is recorded in a normal intensity

only.

SUNGSHIN UNIVERSITY



The Ryerson Audio-Visual Databe
Speech and Song (RAVDESS) (3)
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https://www.kaggle.com/datasets/uwrfkaggler/ravdess-emotional-speech-audio
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RAVDESS Exemplars

Emotional Speech

Livingstone & Russo, 2018
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Validity of the RAVDESS dataset

- 247 untrained research participants from North America

Proportion correct (%)

Neutral

Neutral / Calm
Angry Angry
e, Surprise Surprise
¢ p
o/'/. Fearful Fearful ) 0“
7%,  Disgust Disgust o%
) g PaA
%o i 099°
] O“
/”o,}. Sad None ?&\e‘

Livingstone, S.R. and F.A. Russo. (2018). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic,
multimodal set of facial and vocal expressions in North American English. PLOS ONE 13(5), e0196391.
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l. Random Forest

precision recall fl-score support

Random Forest Classifier neutral 0.40 0.16 0.23 25

calm 0.47 0.79 0.59 61

Kdetoset happy 0.49 0.30 0.37 66

N, features N, features N, features N, features Sad 0 ” 4 5 0 2 3 0 0 b 3 6 6 6

angry 0.72 0.60 0.65 72

L N e fearfal 0.3 048 0.50 60

TREE #1 TREE #2 TREE #3 TREE #4 dnglISt 0.37 0.52 0.43 60

N e A " surprised 0.49 0.59 0.54 66
[ | | J

accuracy 0.49 476

] macro avg 0.49 0.47 0.46 476

weighted avg 0.50 0.49 0.48 476

Z Support = # of samples
«  Precision: ¥dgS =2
¢ Recall: ¥d HE S
«  F-score: precisiond} recal

Muller, A. C., & Guido, S. (2016). Introduction to machine learning with Python: a guide for data scientists. " O'Reilly Media, Inc.".



Il. Deep Learning (CNN)

Model: "sequential 13"

Layer (type) Output Shape Param #
convld 56 (ConvlD) (None, 40, 128) 768
activation_69 (Activation) (None, 40, 128) 0
dropout_26 (Dropout) (None, 40, 128) 0
max_poolingld 18 (MaxPooling (None, 5, 128) 0
convld 57 (ConvlD) (None, 5, 128) 82048
activation_70 (Activation) (None, 5, 128) 0
dropout_27 (Dropout) (None, 5, 128) 0
flatten_13 (Flatten) (None, 640) 0
dense_13 (Dense) (None, 8) 5128
activation_ 71 (Activation) (None, 8) 0

Total params: 87,944
Trainable params: 87,944
Non-trainable params: 0

loss
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model loss

—— train
— test

0 200 400 600 800 1000
epoch

modified from https://github.com/marcogdepinto/emotion-classification-from-audio-files/blob/master/legacy_code/data_exploration/EmotionsRecognition.ipynb
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model accuracy precision recall fl-score  support

09 —— ftrain
0 neutral 0.26 0.40 0.31 25
' calm 0.65 0.59 0.62 61
OF happy 0.53 0.61 0.56 66
5 Do sad 0.58 0.45 0.51 66
® 0.5 angry 0.70 0.60 0.65 72
0.4 fearful 0.58 0.63 0.61 60
58 disgust 0.50 0.55 0:52 60
o surprised 0.60 0.56 0.58 66
0.1 accuracy 0.56 476
0 200 4°0e ok 600 800 1000 macro avg 0.55 0.55 0.55 476
. weighted avg 0.58 0.56 0.57 476

de Pinto, M. G., Polignano, M., Lops, P., & Semeraro, G. (2020, May). Emotions understanding model from spoken language using deep neural networks and mel-frequency cepstral
coefficients. In 2020 IEEE Conference on Evolving and Adaptive Intelligent Systems (EAIS) (pp. 1-5). IEEE.
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lll. Transfer Learning

Beginner’s Guide to Transformer-based NLP Models

1. Transformers explained DI b pred
NLP models (BERT, GPT-2, etc.) UPSTREAM
& i
+] + b
o o
3.Transfer lenfning, E)re-txnining, and 4. Multi-task and meta-learning
fine-tuning
—
o=
Yo SE =
£ ~2oq — =
- =
5. Access to Transformer-based NLP 6. Impl of these models for
models downstream NLP tasks
4'6'»-

25

rm x

| | Model fine-tuning

I Unlabeled speech | | Self-supervised pre-training

P = L Wav2vec 2.0 / XLS-R - - - .
7 Multilingual ™ * /" ¢ monVoice N N N
| Librispeech 0 tROR” o) , T , , ! Recognition i Translation i Classification !

he - “.~. - ‘~_:a ______ -

‘\‘ 50k hours - 8 langs A \ Read speech 4 R .
. [freadbooks . : Transformer/ || ¥

o7 N P N Masked -
¢ VoxLingual07 / BABEL N Transformer
\ 6.6k hours - 107 langs | \ 1k hours - 17 langs 1

Youtube speech / *\ Phone conversations /,
9 P

VoxPopuli
\ 372k hours - 23 langs

s Parliament speech 4
~ e

Baevski, A, Zhou, Y., Mohamed, A., & Auli, M. (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. Advances in
Neural Information Processing Systems, 33, 12449-12460.
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wav2vec2.0 for Children-Specific A

from unicode_jamo import *
join_jamos(processor.decode(pred_ids))

‘7152l ofFEA ARt oY=z

Z @ Wer
skkkk train metrics skekkkk
epoch = 30.0
total_flos = 465552446523GF
0.75 train_loss = 0.4268
train_runtime = 14 days, 11:02:18.34
train_samples = 161732
train_samples_per_second = 3.884
0 train_steps_per_second = 0.061
0.25

0
400 7600 14800 22000 29200 36400 43600 50800 58000 65200 72400
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angry
calm
disgust
fear
happ

wav2vec2.0 based classification

precision

0.73
0.84
0.72
0.37
0.50

recall fl-score

.81
.78
.67
.82
.07

0.77
0.81
0.69
0.51
0.13

support

27
27
27
28
27

surprise

accuracy
macro avg
weighted avg

0.78

0.56
0.50
0.53

27

204
204
204

Support = # of samples
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IV. Generalized Additive Mixed ‘ ©

2 In Linear Model, the mean of data is modeled as a sum
of linear terms

03-01-08-01-01-01-03.wav

350

Vi = Po+ Zﬁxji+3i
J

300

2 In Generalized Additive Mixed Model, the mean of data
is modeled as a sum of smooth functions (= smooths)

250

200

150 \'\A
Yi = Po+ Z sj(xji) + &
J

50
100 120 140 160 180 200 220

Wood, S. N. (2017). Generalized additive models: an introduction with R. CRC press.
Séskuthy, M. (2017). Generalised additive mixed models for dynamic analysis in linguistics: A practical introduction. arXiv preprint
arxiv:1703.05339.



GAMM approach to the FO
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Gamm Modeling

Formula:

FO ~ Emotions + s(Time,

I|re") +

s (Actor, Emotions,

Parametric coefficients:

Estimate Std.

by

Emotions,

bs = "re")

k

= 10) + s(Actor,

Error t value Pr(>|t])

(Intercept) 7.9017 1.0637 7.429 1.10e-13 ***
Emotionsangry 6.9618 0.6277 11.091 < 2e-16 ***
Emotionscalm -0.6860 0.6277 -1.093 0.274459
Emotionsdisgust 2.2108 0.6277 3.522 0.000428 *x**
Emotionsfear 7.3391 0.6277 11.692 < 2e-16 ***
Emotionshappy 5.7515 0.6277 9.163 < 2e-16 ***
Emotionssad 2.8123 0.6277 4.480 7.46e-06 ***
Emotionssurprise 6.2753 0.6277 9.997 < 2e-16 ***
Signif. codes: 0 ‘***’ @.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

R-sq.(adj) = 0.649 Deviance explained 64.9%

fREML = 1.0445e+06 Scale est. 20.228 n = 357120



Pair-wise comparison of contours

Angry(red) vs. Happy (blue)

Est. difference in FO

0

50 100 150 200 250

Time

Neutral (red) vs. Calm (blue)
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Time

Est. difference in FO
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Difference angry - happy

« FO contour differentiates angry from happy.

dom

T ) T 1
50 100 150 200 250

Time

Difference neutral - calm

* FO contour hardly differentiates calm from neutral.

50 100 150 200 250

Time
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Conclusion

U I reviewed briefly what and how we can do with large-scaled datasets
of spoken language.

U | attempted to compare approaches to emotional classification
O | put an emphasis on modelling emotions using FO contours as an
input to generalized additive model (GAM)
U The present approach has predictive power.

U The additive model provides visualized aids and makes us better
understand validity of the data obtained from human labelers.
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