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of F0s and formants influence the perception of speech sounds. For this paper, the 

dynamic trajectories of two calibration sentences read by all participants (more than 

600) in the TIMIT database are preprocessed by the general-purpose Python 

programming language and the third-party packages Parselmouth, TextGridTools, 

and Pandas. Parselmouth and TextGridTools function as interfaces to the underlying 

Praat software, which is a de facto standard tool for phonetic research but lacks the 

functionality of general-purpose computer programs. The data preprocessed through 

the interfacing packages are formed into a data frame and then fed into the R 

environment, which still has superior capability to deal with statistical modeling in 

comparison to Python, to model the dynamic phonetic trajectories using the 

Generalized Additive Mixed Model (GAMM). The F0 trajectories over all 

calibration sentences were also inspected across dialects and different education 

levels. The approach taken in this paper will further our understanding of the 

phonetic trajectories in the shaping of phonetic and phonological patterns. (Sungshin 

Women’s University, Associate Professor) 
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1. Introduction 

 

The purpose of this paper is to examine and model the dynamic properties of speech 

sounds using a corpus-based approach. The speech sounds that humans use for 

communication have long been the subject of research under separate disciplines of 

phonetics and phonology. Speech sounds are an intriguing subject of research that 

has a duality in that they have both physical and continuous properties on one hand 

and abstract and categorical properties on the other hand. The 20th century 
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phonological study has developed by explicitly or implicitly accepting the distinction 

between phonetics and phonology (Ladd, 2014). In classical phonology, a postulated 

phonological presentation consists of phonological features and can be changed by 

phonological rules and constraints. However, examples of phonological alternations 

typically viewed as categorical and phonological phenomena have also been 

challenged in several previous studies (e.g., Nolan, 1992).   

Over the years, theories to explain both categorical and gradient phonological 

phenomena have been proposed. Such alternative theories include the Exemplar 

theory and Corpus Phonology. Exemplar theory was originally proposed as a 

methodology that could classify multidimensional stimuli in psychology (Hintzman 

1986; Nosofsky, 1986), and the theory has been applied to phonology and has been 

active since the mid-1990s. In brief, exemplar theory concerns the representation and 

processing of categories in which stimuli are processed by comparing them to a set of 

previous exemplars in memory. The learning of statistical distributions in categories 

is influenced by the frequency and recency of exposure to exemplars and factors such 

as gender, age, and social categories. Thus, along with the advent of exemplar theory, 

the need for corpus phonology as a modern phonological research method has 

increased since corpus phonology can meet the call for being embedded within an 

extensive framework of social, cognitive, and biological science (Ernestus & Baayen, 

2011; Durand, Gut, & Kristoffersen, 2014; Cho et al. 2021). 

In this paper, continuing the tradition of linking the phonetic details into 

phonological patterning using speech corpus, I attempt to construct statistical models 

with phonetic trajectories of formants and F0s to better understand how much 

information in dynamic trajectories explain variation in phonological representations. 

To be specific, I present GAMM-based approaches to statistical modeling of 

dynamic phonetic trajectories using the TIMIT database (Zue & Seneff, 1996). The 

TIMIT database has long been used in the realm of speech recognition and phonetics 

research (cf. Yoon 2019). The corpus is accompanied by detailed meta information. 

The pieces of information, together with dynamic trajectories of speech samples, can 

provide a valuable test case for evaluating the validity of exemplar theory. In this 

paper, I first demonstrate how the acoustic and textual information can be processed, 

mutated, and merged so that contextual information can be used as input features to 

statistical modeling. The manipulation will be made using third-party packages such 

as Parselmouth (Jadoul, Thompson, & de Boer, 2018), TextGridTools (Buschmeier 

& Włodarczak, 2013), and Pandas (McKinney, 2011). Among the Python packages, 



GAMM-based modeling of dynamic phonetic trajectories 465 

Parselmouth and TextGridTools function as interfaces to the Praat software, which is 

considered a de facto standard tool for linguistic phonetic research. In this paper, I 

will choose a couple of meta information to build statistical models. As for the 

statistical modeling, Generalized Additive Mixed Model (or GAMM for short; Wood, 

2015) has been applied to the so-called calibration sentences in the TIMIT database, 

as the two sentences are uttered by all participants (n > 600). 

 

2. Methods 

 

2.1 Data 

 

The current study employs corpus-based studies using the phone-balanced connected 

speech corpus of TIMIT. The TIMIT database is accompanied by detailed meta 

information, including broadly defined dialectal areas of participating speakers, 

gender, age, height, year of birth, and educational background, which can provide a 

valuable test case for evaluating the validity of exemplar theory. Because of the 

quantity of speech and the fine-grained segmentation and labeling qualities, the 

TIMIT database provides an unusual corpus for phonetic research. The TIMIT 

database includes 630 talkers and 2342 different sentences, comprising over five 

hours of speech. Among the sentences, two sentences, called calibration sentences, 

were produced by all participants. The two calibration sentences are presented in (1).  

 

(1)  a. She had your dark suit in greasy wash water all year. (SA1) 

 b. Don’t ask me to carry an oily rag like that. (SA2) 

 

According to Zue & Seneff (1996) and Byrd (1994), the calibration sentences were 

designed to incorporate phonemes in contexts where significant dialectal differences 

were anticipated. Byrd (1994) tried to tease apart the dialectal differences by 

comparing the duration of the two utterances. In this study, I will examine whether 

the intonational patterns of the two sentences in (1) show differences among dialects. 

Note that calibration sentence one has 13 syllables, and calibration sentence two has 

12 syllables. Thus, two separate models will be constructed for each sentence.   
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2.2 Acoustic feature extraction 

 

The extraction of features in the TIMIT database was aided by using the Python 

programming language and its third-party libraries such as Parselmouth (Jadoul et al. 

2018) and TextGridTools (Buschmeier & Włodarczak, 2013). The rationale for 

choosing Python and its third-party libraries lies in their powerful and efficient 

handling of large-scaled phonetic data.  

In the past decades, data analysis in phonetics and phonology research more than 

often relied on the functionality of Praat (Boersma & Weenink 2018). Praat is an 

extensive phonetic analysis software package, and it has been widely used by 

phoneticians and phonologists for analyzing speech sounds. Praat is very useful due 

to its scripting function, which can significantly facilitate acoustic feature extraction 

by automatizing repetitive, tedious, and time-consuming tasks of extracting acoustic 

features (Buschmeier & Włodarczak, 2013; Jadoul et al. 2018). 

As neatly explained in Jadoul et al. (2018), although the Praat scripting language is 

suitable for automating repeated works, it is limited compared to a general-purpose 

computer programming language such as Python, which can integrate various 

computational utilities. On the other hand, it is difficult or time-consuming to 

conduct the analysis of linguistic phonetic studies with the general-purpose 

programming language. The necessary functionality is “often unavailable or 

dispersed over multiple unrelated and sometimes incompatible libraries (Jadoul et al. 

2018: 2).” In this study, I used Praselmouth (Jadoul et al. 2018), as it provides access 

to Praat’s functionality as well as the full-range computational power of Python, with 

one shortcoming.  

The shortcoming is that Parselmouth has a very limited and primitive capability of 

dealing with TextGrid files. In linguistic phonetic research, the time-stamped 

information of speech samples annotated with textual information is routinely used to 

understand the segmental and suprasegmental nature of speech sounds in a variety of 

contexts. To cope with the limitation, another Python package TextGridTools 

(Buschmeier & Włodarczak, 2013) has been utilized together with Parselmouth. 

TextGridTools is designed to “offer functions to parse, manipulate and query Praat 

annotations (Buschmeier & Włodarczak, 2013).”  

In this study, I extracted from the training portion of the TIMIT database acoustic 

and textual information using Parselmouth and TextGridTools in the Jupyter 

Notebook environment, a web-based open-source interactive environment that can be 
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used to create documents containing Python codes, the output, and visualization, 

among others. In the Jupyter Notebook, I wrote Python codes to go through each 

folder and subfolder and select the two calibration files (a pair of wave file and 

TextGrid file named SA1 and SA2)1. When two instances of the SA1 and SA2 files 

are encountered, TextGrid objects and Sound Objects are instantiated using the 

functionality of Parselmouth and TextGridTools. F0 and the first two formants are 

extracted at ten equal points for the duration of each vocalic phone. Text information 

was also used to get phone and word information, among other things. Part of the 

processed data in the format of Pandas DataFrame is shown in Figure 1. Note that 

due to the space limit in the Jupyter Notebook, some columns in the middle were 

shown to be truncated in the screenshot.  

 

 

 Figure 1. Pandas DataFrame of the extract features 

 

The TIMIT database is accompanied by text files containing meta information 

such as gender, recorded data, birth date, height, race, and education. The files 

containing these pieces of meta information are processed and converted into another 

Pandas DataFrame as in Figure 2.  

  

 
1 In the TIMIT database, annotated labels are saved as PHN (for time aligned phone 

information) and WRD (for time aligned word information) files in the format of plain text. 

These PHN and WRD text files were converted to TextGrids with corresponding filenames 

using a custom-made Praat script.  
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Figure 2. Processed DataFrame of TIMIT metadata 

 

These two DataFrame objects in Figure 1 and Figure 2 are merged to be used for 

further data analysis. I chose a subset of columns in the merged DataFrame to test 

whether phonetic trajectories such as F0, F1, and F2 over the duration of different 

phones show legitimate and expected patterns. Then I tested whether we could find 

any dialectal differences among the F0 patterns over each calibration sentence.  

 

2.3 Statistical modeling 

 

Dynamic trajectories of F0 and formants are statistically modeled using the 

Generalized Additive Mixed Model (GAMM; Wood, 2015). GAMM is used due to 

its outstanding functionality of modeling nonlinearity (Sóskuthy, 2017, 2021; 

Wieling, 2018). Measurements on human speech often show nonlinear patterns. 

Formant trajectories and pitch contours are well-known examples of nonlinear 

patterns. For example, pitch contour typically does not develop linearly over time. F0 

contour over a stretch of sentence can be quite fluctuating or wiggly. Unlike a 

common practice of considering a pre-defined subset of measurements, such as 

maximum or minimum pitch values, GAMM extends the generalized linear mixed 

model with a large array of tools for modeling nonlinear dependencies between a 

response variable and one or more numeric predictors (Wood, 2015). However, there 

is a shortcoming in nonlinear regression models. In contrast with linear regression 

models, one cannot interpret the shape of the regression line from the summary in 

nonlinear regression models. Therefore, visualization is an essential tool for 
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interpreting nonlinear regression models (van Rij, Wieling, Baayen & van Rijn, 

2015).  

The Generalized Additive Mixed Model (GAMM) will be used with the help of R 

and its packages, especially tidyverse (Wickham, 2017), mgcv (Wood, 2015), itsadug 

(van Rij et al., 2015), because the statistical modeling implemented as R packages 

can capture the underlying dynamic patterns as well as the effects of random factors2. 

The two packages, mgcv and itsadug, are specifically designed for the GAMM 

modeling and its visualization. The package mgcv is for estimating penalized 

Generalized Linear Models and includes the implementation of ‘gam’ (generalized 

additive model) that contains automatic smooth estimation using penalized 

regression splines (Wood, 2015). An additional package itsadug provides a set of 

useful functions that help facilitate the evaluation, interpretation, and visualization of 

GAMM models constructed via the mgcv package (van Rij et al., 2015).  

The tidyverse library is a whole suite of packages that include widely used ggplot2, 

dplyr, and tidyr packages for data manipulation and visualization in the R 

environment (R Core Team, 2019). Instead of loading each package individually, I 

ran the command library(tidyverse) in the Jupyter Notebook environment.  

 

3. Results 

 

3.1 Phone duration 

 

In this section, I present the results of analysis and visualization of vowel duration, 

vowel formant, and F0 trajectories over the range of vowel duration, and then the 

analysis of F0 contours over the whole calibration sentences (SA1 and SA2).  

The data points for each vowel are not limited to only one or two time points but 

extended to 10 time-normalized points. Table 1 shows the number of tokens for each 

phone observed in the two calibration sentences SA1 and SA2. Note that since the 

transcription in the TIMIT database is made for each token of the utterance, the 

number of vowels is not evenly balanced.  

 

 
2  My experience with the two languages of Python and R is that though there are packages 

that connects between R and Python (e.g., rpy2), Python is limited in fully entertaining the 

statistical modeling power of R. I had to change to the R environment for the GAMM-based 

statistical modeling. 
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Table 1. Number of vowel tokens (in parentheses) of the calibration sentences in 

the training portion of the TIMIT database 

 

[ɑ] “aa” (776) [æ] “ae” (1515) [ʌ] “ah” (37) [ɔ] “ao” (980) [aʊ] “aw” (1) 

[ə] “ax” (67) [əɹ] “axr” (866) [ɛ] “eh” (521) [ɜɹ] “er” (320) [e] “ey” (11) 

[ɪ] “ih” (725) [ɨ] “ix” (1147) [i] “iy” (2076) [o] “ow” (427) [ɔɪ] “oy” (339) 

[ʊ] “uh” (33) [u] “uw” (25) [u] “ux” (437) [aɪ] “ay” (405)  

 

Figure 3 is a bar plot that illustrates the mean duration of each phone. Keating et al. 

(1994) reported that TIMIT distinguished between full and reduced vowel qualities, 

with reduced [ə] (“ax”) and [ɨ] (“ix”) used only for very short vowels of unstressed 

quality. Figure 3 confirms that the [ə] and [ɨ] are the reduced vowels as observed in 

the calibration sentences. The figure also illustrates that the diphthongs [aɪ] (“ay”), 

[ɔɪ] (“oy”) and [aʊ] (“aw”) together with the low front vowel [æ] (“ae”) exhibit the 

longer phone duration than the other vowels. A longer duration of [æ] is expected, 

given that the low front vowel has inherently long vowel duration associated with the 

physiological factor of more extended jaw opening and closing.  

 

 

Figure 3. Mean phone duration 
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3.2 Formants 

 

Figure 4 illustrates raw F1 & F2 contour plots for each of the vowel types observed 

in the calibration sentences. The measurement unit is converted from Hertz to Bark.  

 

 

Figure 4. Raw F1 and F2 trajectories 

 

The raw formant values were used as an input to the GAMM model. The predicted 

variables are F1 and F2 formant trajectories, respectively. The explanatory variables 
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are phones and gender, together with formant values extracted from ten evenly 

spaced time points. The ten data points were subject to a cubic spline basis function.  

Overlaid formant contours over the normalized time intervals are shown in 

Figure5. Figure 5 illustrates the F1 and F2 formant contours predicted by the model. 

Due to the sheer number of phones, instead of a pairwise comparison of differences 

between pairs of possible phones, only r-squared values and deviance explained by 

the model are presented in this paper. As for the F1 trajectories, the adjusted r-

squared value is 0.614, meaning that the model can explain 61.4% of the deviance3. 

As for F2, the adjusted r-squared value is 0.734, meaning that the model can explain 

73.4% of the deviance4.  

 

 

Figure 5. F1 and F2 formant contours predicted by the model 

 

3.2.1 Visualization of formant trajectories with F1 and F2 combined 

 

The functionalities of GAMM seem to lack a way of modeling multivariate outcomes 

(such as F1 and F2 values as a simultaneous outcome variable). Alternatively, I made 

 
3  The GAMM model for predicting F1 trajectories: 

timit_phone_F1.gam <- bam(F1s ~ Phone  + Gender + s(FIndex2, 

by=Phone, bs="cr"), data=timit_v, method="ML")  
4  The GAMM model for predicting F2 trajectories: 

timit_phone_F2.gam <- bam(F2s ~ Phone  + Gender + s(FIndex2, 

by=Phone, bs="cr"), data=timit_v, method="ML")  
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a combined contour plot for each phone with the predicted formant trajectories. In 

Figure 6, the first panel is for front vowels and the second panel for back vowels. 

 

 

Figure 6. GAMM-Modeled F1 and F2 contours (front vowels in the left panel 

and back vowels in the right panel) 

 

Figure 7 shows the formant trajectories for diphthongs. As for the diphthongs, [aʊ] 

“aw” and [oʊ] “ow” show a trend of f2 lowering over time, and [ɔɪ] “oy” shows the 

F2 rising patterns.  

 

 

Figure 7. GAMM-Modeled F1 and F2 contours for diphthongs 
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3.3 F0 contours (in semitone) 

 

Figure 8 illustrates the F0 contours over each phone. Since prosodic contexts in 

which the phones were located were not controlled, segmental effects on F0 values 

will not be discussed. Nevertheless, it is worth noting that the reduced vowels (“ax” 

and “ix”) exhibit F0 contours in the lowest F0 ranges, which is expected given the 

lack of stress on the reduced vowels.  

 

 

Figure 8. GAMM-modeled F0 contours for each phone 
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3.4 Sentences 

 

The two calibration sentences were said to be designed to “incorporate phonemes in 

contexts where significant dialectal differences are anticipated” (Byrd, 1994). 

According to Zue & Seneff (1996), these two sentences were “designed by Jared 

Bernstein of SRI in order to compare dialectal and phonological variations across 

speakers. (p. 515)” Broadly speaking, seven geographic dialect region are regions of 

North, North Midland, North East, NY City, South, South Midland, and West (Byrd, 

1994).” An additional dialect division called “Army Brat” was in the TIMIT database, 

but it is excluded from further analysis due to the small number of speakers. Byrd 

(1994) found that the duration of both calibration sentences (or speaking rate) 

significantly affected the dialect region. She found that “dialects range from slowest 

to fastest in the order of South, South Midland, NY City, North, West, North 

Midland, and North East.”  

In this paper, I’d like to see whether dialectal differences can be observed for the 

intonational patterns over utterances. To answer this question, I formulated the 

GAMM model as in (2) for each of the two calibration sentences. In (2), the formula 

is for SA1. In the formula, F0 contours for SA1 are predicted with explanatory 

variables of dialect and gender. The normalized time (as indicated by Sidx2) is 

subject to a cubic spline basis function alone and depending on dialects.  

  

(2) timit_SA1.gam.diff <- bam(F0s ~ DialectNo.ord +  

Gender + s(Sidx2, bs="cr") + 

s(Sidx2,by=DialectNo.ord, bs="cr"), 

data=timit_v_SA1, method="ML") 

 

Table 2 shows the parametric coefficients for the GAMM model for SA1. The first 

sentence SA1 results in that the baseline (New England) dialect shows that its F0 

contour is significantly different from the F0 patterns except for dialect 3 (the 

Northern Midwest) and dialect 7 (the Western United States).  
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Table 2. Parametric coefficients for the GAMM-model for the SA1 sentence 

 

 Estimate Std. Error   t value Pr(>|t|)      

(Intercept) 11.17126    0.05010   222.989   < 2e-16 *** 

DialectNo.ord2   0.20847     0.05594     3.727 0.000194 *** 

DialectNo.ord3   -0.06251     0.05619    -1.113 0.265898      

DialectNo.ord4   0.44494     0.05730     7.766 8.25e-15 *** 

DialectNo.ord5   0.25715     0.05669     4.536 5.75e-06 *** 

DialectNo.ord6   0.11478     0.06793     1.690 0.091076 * 

DialectNo.ord7   0.04600     0.05603     0.821 0.411716      

GenderM -8.41326     0.02945 -285.673   < 2e-16 *** 

R-sq.(adj) =  0.633   Deviance explained = 63.4% 

 

 Table 3 is obtained using the same formula in (2), except that the data is from SA2. 

The first sentence SA2 results in that the baseline (New England) dialect shows that 

its F0 contour is significantly different from the F0 patterns in other dialects except 

for dialects 2(the Atlantic seabord), 3(the northern MidWest), and 5(the 

Southeastern). The final line in Table 2 and Table 3 below shows the goodness-of-fit 

statistics. 63.4% of the deviance for SA1 and 61.3% of the deviance for SA2 in the 

calibration sentences can be explained by the model in (2). 

 

Table 3. Parametric coefficients for the GAMM-model for the SA2 sentence 

 

 Estimate Std. Error   t value Pr(>|t|)      

(Intercept) 10.8191207   0.0546855   197.842   < 2e-16 *** 

DialectNo.ord2   0.0767778   0.0606130   1.267    0.2053      

DialectNo.ord3   0.0008724   0.0610957   0.014    0.9886      

DialectNo.ord4   0.2801049   0.0622437   4.500 6.81e-06 *** 

DialectNo.ord5   0.0882217   0.0617566   1.429    0.1531      

DialectNo.ord6   0.1644641   0.0727612   2.260    0.0238 * 

DialectNo.ord7   -0.1310973   0.0610374   -2.148    0.0317 * 

GenderM -8.3293040   0.0320138 -260.179   < 2e-16 *** 

R-sq.(adj) =  0.613   Deviance explained = 61.3% 

 



GAMM-based modeling of dynamic phonetic trajectories 477 

Figure 9 shows GAMM-modelled overlaid F0 contours of two calibration 

sentences in the TIMIT database. Visual inspection of the modeled F0 patterns for 

SA1 and SA2, respectively, reveals that one dialect (New York City) in SA1 stands 

out in that the ending portion of the F0 rises up significantly, which is typical of 

question type of utterances or utterances with uncertainty, or uptalks. In the case at 

hand, since the type of sentence is declarative, the rising F0 pattern may be due to 

uncertainty. Systematic inspection of the data in this dialectal region is needed. It 

also reveals that the differences between dialects may come from the variances at the 

end of the F0 patterns. Visualization of the F0 patterns among different education 

levels seems to show similar patterning regarding overall F0 patterns.  

 

 

 

Figure 9. Model F0 contours per dialects (above) and education (down), for SA1 

(left) and SA2 (right) 



478 Tae-Jin Yoon 

 

The following two panels in Figure 10 show individual F0 patterns per dialect. 

Once again, New York City shows sharp rising patterns of F0 at the end of the 

sentence SA1. However, given the patterns of the F0 in SA2, which belongs to the 

declarative type of sentence, and given the absence of rising patterns when the 

patterns are modeled after the education level, the unique rising pattern as we 

observed in SA1 for the New York dialect requires future explanation.  

 

  

Figure 10. Individual F0 contours over SA1 and SA2, respectively, per dialect 

 

4. Results and conclusion 

 

In this paper, GAMM-based approaches to dynamic trajectories of phonetic features 

are presented using the TIMIT database. Using third-party packages such as 

Parselmouth, TextGridTools, and Pandas, I demonstrated how the acoustic and 

textual information could be processed, mutated, and merged so that contextual 

information could be used as input features to statistical modeling. As for the 

statistical modeling, Generalized Additive Mixed Model (GAMM) has been applied 

to the calibration sentences in the TIMIT database, as the two sentences (SA1 and 

SA2) are read by all participants. Due to the sheer number of comparisons to make 

for each pair of phones, I have not tried any systematic pairwise comparison. Instead, 

visualization of the F0, F1, and F2 models was made for each phone based on 

GAMM. The visualization revealed legitimate and expected patterns. To observe 
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whether the calibration sentences exhibit dialectal differences on the intonation level, 

I made separate GAMM-based models of F0 contours for each calibration sentence. 

Even though it requires further systematic investigation, dialectal differences, if any, 

seem to be most vivid at the ending part of the utterance. Apparently, only a very 

small subset of the meta information available in the TIMIT database, both sound 

files and meta information, has been used in this study. Nevertheless, the approach 

taken in this paper looks promising in furthering our understanding of the phonetic 

trajectories in the shaping of phonetic and phonological patterns. More systematic 

and comprehensive analysis using the available meta information will be left for 

future research. 
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